

PRODUCTION ALLOCATION THROUGH NONNEGATIVE MATRIX FACTORIZATION*

Paolo Zanini

MOX - Department of Mathematics, Politecnico di Milano

March, 26th 2015

^{*}This work was partially supported by Eni - Exploration & Production

Production Allocation

We consider n wells where oils are extracted from a reservoir with k sublevels.

Starting from the observation of the n chromatograms, we want to retrieve the sublevel chromatograms and the contributions of the sublevels for every well. For the generic ith well we can consider the following model:

Nonnegative matrix factorization - Alternating Least Square

$$X = CS$$

- X data matrix (# Observations \times # Instants)
- C concentration matrix (# Observations × # Sublevels)
- S sublevel matrix (# Sublevels × # Instants)

Known Unknown Unknown

Question

Is it possible to provide and estimate $(\widehat{C}, \widehat{S})$ of (C, S) only relying upon data gathered in X?

Answer: an alternating least square algorithm

$$\widehat{C}^{(m)} = \operatorname{arg\,min}_C ||X - C\widehat{S}^{(m-1)}||^2$$

$$\widehat{S}^{(m)} = \arg\min_{S} ||X - \widehat{C}^{(m)}S||^2$$

under suitable constraints (nonnegativity, coefficients sum...).

Results

Accuracy: mean error for the coefficient matrix around 3%.